1.6. Движение по окружности

Движение тела по окружности является частным случаем криволинейного движения. Наряду с вектором перемещения удобно рассматривать угловое перемещение Δφ (или угол поворота), измеряемое в радианах (рис. 1.6.1). Длина дуги связана с углом поворота соотношением

Δl = RΔφ.
 

При малых углах поворота Δl ≈ Δs.

Линейное  и угловое  перемещения
1
Рисунок 1.6.1.
Линейное и угловое перемещения при движении тела по окружности.
Угловой скоростью ω тел в данной точке круговой траектории называют предел (при Δt → 0) отношения малого углового перемещения Δφ к малому промежутку времени Δt:

 

Угловая скорость измеряется в рад/с.

Связь между модулем линейной скорости υ и угловой скоростью ω:

υ = ωR.
 

При равномерном движении тела по окружности величины υ и ω остаются неизменными. В этом случае при движении изменяется только направление вектора

Равномерное движение тела по окружности является движением с ускорением. Ускорение

направлено по радиусу к центру окружности. Его называют нормальным, или центростремительным ускорением. Модуль центростремительного ускорения связан с линейной υ и угловой ω скоростями соотношениями: 


Для доказательства этого выражения рассмотрим изменение вектора скорости за малый промежуток времени Δt. По определению ускорения

 

Векторы скоростей и в точках A и B направлены по касательным к окружности в этих точках. Модули скоростей одинаковы υA = υB = υ.

Из подобия треугольников OAB и BCD (рис. 1.6.2) следует:

 

Центростремительное ускорение тела
2
Рисунок 1.6.2.
Центростремительное ускорение тела при равномерном движении по окружности.
При малых значениях угла Δφ = ωΔt расстояние |AB| =Δs ≈ υΔt. Так как |OA| = R и |CD| = Δυ, из подобия треугольников на рис. 1.6.2 получаем:

 

При малых углах Δφ направление вектора приближается к направлению на центр окружности. Следовательно, переходя к пределу при Δt → 0, получим:

 

При изменении положения тела на окружности изменяется направление на центр окружности. При равномерном движении тела по окружности модуль ускорения остается неизменным, но направление вектора ускорения изменяется со временем. Вектор ускорения в любой точке окружности направлен к ее центру. Поэтому ускорение при равномерном движении тела по окружности называется центростремительным.

В векторной форме центростремительное ускорение может быть записано в виде

где – радиус-вектор точки на окружности, начало которого находится в ее центре. 

Если тело движется по окружности неравномерно, то появляется также касательная (или тангенциальная) составляющая ускорения.

 

В этой формуле Δυτ = υ2 – υ1 – изменение модуля скорости за промежуток времени Δt.

Направление вектора полного ускорения определяется в каждой точке круговой траектории величинами нормального и касательного ускорений (рис. 1.6.3).

Составляющие ускорения
3
Рисунок 1.6.3.
Составляющие ускорения и при неравномерном движении тела по окружности.
Движение тела по окружности можно описывать с помощью двух координат x и y (плоское движение). Скорость тела в каждый момент можно разложить на две составляющие υx и υy (рис. 1.6.4).

При равномерном вращении тела величины x, y, υx, υy будут периодически изменяться во времени по гармоническому закону с периодом

 

Разложение вектора скорости
4
Рисунок 1.6.4.
Разложение вектора скорости по осям координат.

Возврат

 

Хостинг от uCoz